PRE-CALCULUS

Code: M644 Full Year (12) (1 credit)

Prerequisite: Algebra 2 & Trigonometry

(rank weight 1.00)

Note: This course is intended for students who wish to further their understanding of

mathematical structure and analysis.

Areas of Study Include:

Trigonometry

(9 days)

- Define and evaluate the six trigonometric ratios.
- Solve triangles using trigonometric ratios.
- Define radian measure and convert angle measures between degrees and radians.
- Define the trigonometric functions in terms of the unit circle.
- Develop basic trigonometric identities.
- Use trigonometric functions to model and solve real-world problems, including right triangle relations, arc length, and speed.

• Trigonometric Graphs

(7 days)

- Graph the sine, cosine, and tangent functions.
- Identify the domain and range of a basic trigonometric function.
- Graph transformations of the sine, cosine, and tangent graphs.
- Graph the cosecant, secant, and cotangent functions and their transformations.
- Identify and sketch the period, amplitude (if any), and phase shift of the cosine, sine, and tangent functions.
- Use trigonometric graphs to model and solve real-world problems.

• Trigonometric Equations and Identities

(26 days)

- Solve trigonometric equations graphically and algebraically.
- Define the domain and range of the inverse trigonometric functions.
- Write a trigonometric function to model and solve real-world problems.
- Apply strategies to prove identities.
- Use the addition and subtraction identities for sine, cosine, and tangent functions.
- Use the double-angle and half-angle identities.
- Use identities to solve trigonometric equations.
- Solve triangles using the Law of Cosines.
- Solve triangles using the Law of Sines.
- Applications of Laws of Cosines and Sines

(Not necessary to do Area.)

• Applications of Trigonometry

(20 *days*)

Vectors in the Plane

- 2 Dimentional Vectors
- Vector Operations
- Unit Vectors
- **Direction Angles**
- Applications of Vectors
- Dot Product of Vectors
 - Angle between Vectors
- Parametric Equations and Motion
 - Parametric Equations
 - Parametric Curves
 - Eliminating the Parameter
- Polar Coordinates
 - **Coordinate Conversions**
 - Coordinate Equations
- Graphs of Polar Equations
- DeMoivre's Theorem and *n*th Roots
 - The Complex Plane
 - Polar Form of Complex Numbers
 - Operations on Complex Polar Numbers

Matrices (15 days)

- Identifying Matrices
- Matrix Addition and Scalar Multiplication
- Matrix Multiplication
- Identity and Inverse Matrices
- Applying Matrices to Linear Systems
- Applications:
 - Communication Matrices
 - Transition Matrices
 - Transformation Matrices

Midyear

• Analytic Geometry

(10 days)

- Eccentricity
- Define a circle and write its equation.
- Analyze and sketch the graph of a circle.
- Define an ellipse and write its equation.
- Analyze and sketch the graph of an ellipse.
- Define a hyperbola and write its equation.
- Analyze and sketch the graph of a hyperbola.
- Define a parabola and write its equation.
- Analyze and sketch the graph of a parabola. - Write the equation of and graph a translated conic section.
- Use conic sections to model and solve real-world problems.

• Functions and Graphs

(14 days)

- Determine the domain and range of a function.
- Evaluate piecewise-defined and greatest integer functions.
- Analyze graphs to determine domain and range, local maxima and minima, intercepts, and intervals where they are increasing and decreasing.
- Transform graphs of parent functions.
- Determine whether a graph is symmetric with respect to the x-axis, y-axis, and/or origin.
- Perform addition, subtraction, multiplication, division, and composition of functions.
- Define inverse relations and functions and determine whether an inverse relation is a function
- Verify inverses using composition.

• Polynomial and Rational Functions

(17 days)

- Divide polynomials.
- Apply the Remainder and Factor Theorems.
- Determine the maximum number of zeros of a polynomial.
- Find all rational zeros of a polynomial.
- Simplify and perform operations on complex numbers.
- Solve for the complex zeros of a polynomial.
- Analyze and sketch polynomial functions using continuity, end behavior, intercepts, local extrema, and points of inflections.
- Use polynomial functions to model and solve real-world problems.
- Find the domain of a rational function.
- Identify intercepts, holes, vertical, horizontal, and slant asymptotes in order to sketch graphs of rational functions.

• Exponential and Logarithmic Functions

(21 days)

(15 days)

- Simplify expressions containing radicals or rational exponents.
- Graph and identify transformations of exponential functions, including the number.
- Use exponential functions to model and solve real-world problems.
- Graph and identify transformations of logarithmic functions.
- Evaluate logarithms to any base with and without a calculator.
- Apply properties and laws of logarithms to simplify and evaluate expressions.
- Solve exponential and logarithmic equations.
- Use exponential and logarithmic models to solve real-world problems.

• Limits

- Use the informal definition of limit.
- Use and apply the properties of limits to find the limit of various functions.
- Find one-sided limits.
- Determine if a function is continuous at a point or an interval.
- Find the limit as x approaches infinity

8 days for review, 2 days for in-class final

Optional Topics, if Time:

- An Introduction to Calculus
 - The Slope of a Curve
 - Using Derivatives in Curve Sketching
 - Extreme Value Problems
 - Velocity and Acceleration

Assessment: Pre-Calculus students will take a district-wide final exam in June.

Textbook: *Advanced Mathematics with Pre-Calculus*, published by McDougal Littell/Houghton-Mifflin, © 2003