Review Test Waves, Light & Modern January 2008

Name	

This year there were 26 out of 85 possible credits or about 31% of the test

23 Increasing the amplitude of a sound wave produces a sound with

- (1) lower speed
- (3) shorter wavelength
- (2) higher pitch
- (4) greater loudness

24 The product of a wave's frequency and its period is

(1) one

- (3) its wavelength
- (2) its velocity
- (4) Planck's constant

25 A periodic wave having a frequency of 5.0 hertz and a speed of 10. meters per second has a wavelength of

- (1) 0.50 m
- (3) 5.0 m
- (2) 2.0 m
- (4) 50. m

26 An electromagnetic wave traveling through a vacuum has a wavelength of 1.5×10^{-1} meter. What is the period of this electromagnetic wave?

- (1) 5.0×10^{-10} s
- (3) $4.5 \times 10^7 \text{ s}$
- (2) 1.5×10^{-1} s
- (4) $2.0 \times 10^9 \text{ s}$

27 A ray of light ($f = 5.09 \times 10^{14}$ Hz) traveling in air strikes a block of sodium chloride at an angle of incidence of 30.°. What is the angle of refraction for the light ray in the sodium chloride?

(1) 19°

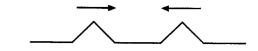
(3) 40.°

 $(2) 25^{\circ}$

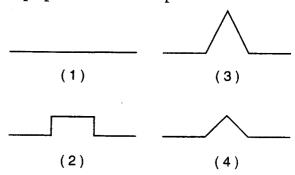
(4) 49°

28 The speed of a ray of light traveling through a substance having an absolute index of refraction of 1.1 is

- (1) 1.1×10^8 m/s
- (3) 3.0×10^8 m/s
- (2) 2.7×10^8 m/s
- (4) 3.3×10^8 m/s


29 Resonance occurs when one vibrating object transfers energy to a second object causing it to vibrate. The energy transfer is most efficient when, compared to the first object, the second object has the same natural

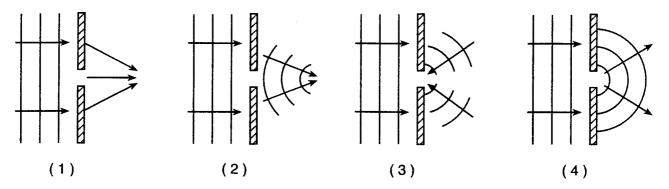
- (1) frequency
- (3) amplitude
- (2) loudness
- (4) speed


30 A subatomic particle could have a charge of

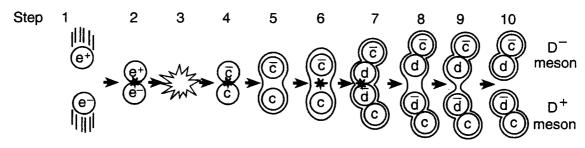
- (1) 5.0×10^{-20} C
- (3) 3.2×10^{-19} C
- (2) 8.0×10^{-20} C
- (4) $5.0 \times 10^{-19} \,\mathrm{C}$

31 Two pulses traveling in the same uniform medium approach each other, as shown in the diagram below.

Which diagram best represents the superposition of the two pulses?


32 A police car traveling at a speed of 30.0 meters per second sounds its siren, which has a frequency of 1.00×10^3 hertz. As the police car approaches a stationary pedestrian, the pedestrian detects a siren frequency of

- (1) 30.0 Hz
- (3) $1.00 \times 10^3 \text{ Hz}$
- (2), 9.19×10^2 Hz
- (4) $1.10 \times 10^3 \text{ Hz}$


33 A variable-frequency light source emits a series of photons. As the frequency of the photon increases, what happens to the energy and wavelength of the photon?

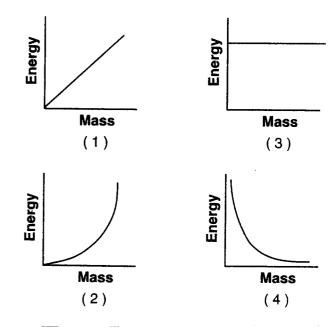
- (1) The energy decreases and the wavelength decreases.
- (2) The energy decreases and the wavelength increases.
- (3) The energy increases and the wavelength decreases.
- (4) The energy increases and the wavelength increases.

34 Which diagram best represents the shape and direction of a series of wave fronts after they have passed through a small opening in a barrier?

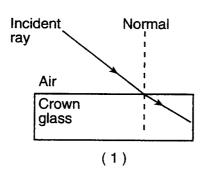
35 The diagram below represents the sequence of events (steps 1 through 10) resulting in the production of a D⁻ meson and a D⁺ meson. An electron and a positron (antielectron) collide (step 1), annihilate each other (step 2), and become energy (step 3). This energy produces an anticharm quark and a charm quark (step 4), which then split apart (steps 5 through 7). As they split, a down quark and an antidown quark are formed, leading to the final production of a D⁻ meson and a D⁺ meson (steps 8 through 10).

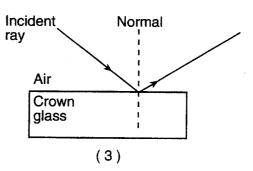
Adapted from: Electon/Positron Annihilation http://www.particleadventure.org/frameless/eedd.html 7/23/2007

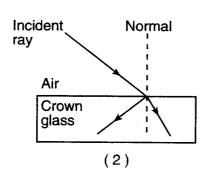
Which statement best describes the changes that occur in this sequence of events?

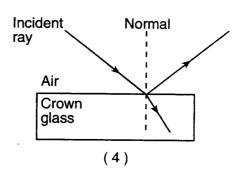

- (1) Energy is converted into matter and then matter is converted into energy.
- (2) Matter is converted into energy and then energy is converted into matter.
- (3) Isolated quarks are being formed from baryons.
- (4) Hadrons are being converted into leptons.
- 45 A particle unaffected by an electric field could have a quark composition of
 - (1) css

(3) *udc*

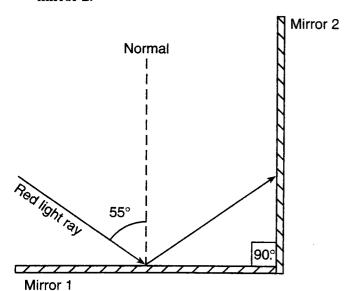

(2) bbb


- (4) uud
- 47 A sound wave has a wavelength of 5.5 meters as it travels through air at STP. What is the wavelength of this sound in a medium where its speed is 1324 meters per second?
 - (1) 1.4 m
- (3) 14 m
- (2) 2.2 m
- (4) 22 m


48 Which graph best represents the relationship between energy and mass when matter is converted into energy?



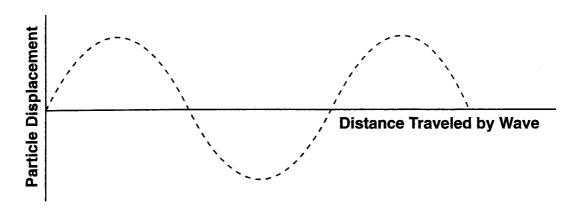
49 Which diagram best represents the behavior of a ray of monochromatic light in air incident on a block of crown glass?



Base your answers to questions 56 and 57 on the information and diagram below.

Two plane mirrors are positioned perpendicular to each other as shown. A ray of monochromatic red light is incident on mirror 1 at an angle of 55°. This ray is reflected from mirror 1 and then strikes mirror 2.

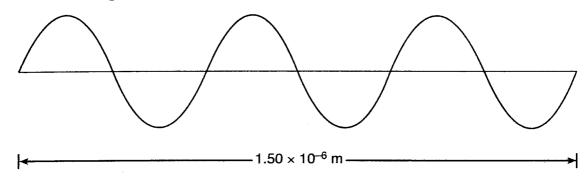
62 A tau lepton decays into an electron, an electron antineutrino, and a tau neutrino, as represented in the reaction below.


$$\tau \rightarrow e + \overline{\nu}_e + \nu_\tau$$

On the equation in your answer booklet, show how this reaction obeys the Law of Conservation of Charge by indicating the amount of charge on each particle. [1]

56 Determine the angle at which the ray is incident on mirror 2. [1]

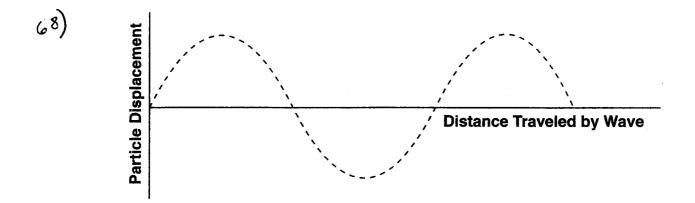
57 On the diagram in your answer booklet, use a protractor and a straightedge to draw the ray of light as it is reflected from mirror 2. [1]


68 The diagram below represents a periodic transverse wave traveling in a uniform medium.

On the diagram in your answer booklet, draw a wave having both a smaller amplitude and the same wavelength as the given wave. [2]

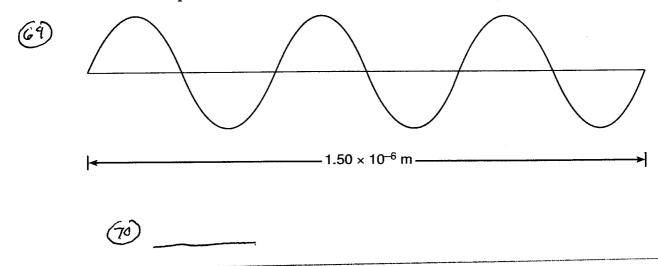
Base your answers to questions 69 and 70 on the information and diagram below.

A 1.50×10^{-6} -meter-long segment of an electromagnetic wave having a frequency of 6.00×10^{14} hertz is represented below.

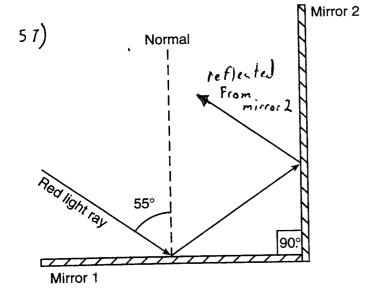

- 69 On the diagram in your answer booklet, mark two points on the wave that are in phase with each other. Label each point with the letter P. [1]
- 70 According to the Reference Tables for Physical Setting/Physics, which type of electromagnetic wave does the segment in the diagram represent? [1]

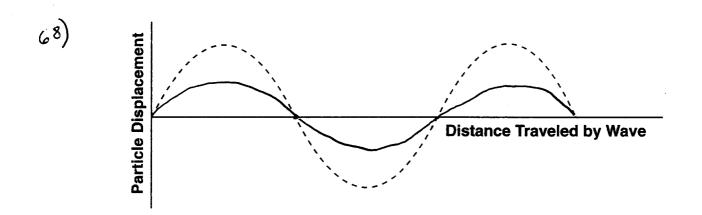
Base your answers to questions 75 and 76 on the information below.

In a mercury atom, as an electron moves from energy level i to energy level a, a single photon is emitted.

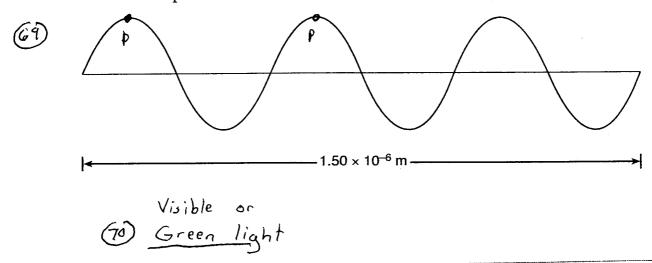

- 75 Determine the energy, in electronvolts, of this emitted photon. [1]
- 76 Determine this photon's energy, in joules. [1]

Answer Sheet Name Waves, Light, Modern Review January 2008 31 _____ Part B 22 ____ 32 ____ 23 ____ 33 ____ 45 ____ 24____ 49 34 ____ 47 ____ 25____ 48 26____ 27____ 28____ 24____ 30 ____ 5G) * = ___ 62) Mirror 2 et et e 57) Normal Red light ray 55° Mirror 1


Base your answers to questions 69 and 70 on the information and diagram below.


A 1.50×10^{-6} -meter-long segment of an electromagnetic wave having a frequency of 6.00×10^{14} hertz is represented below.

Cre	[its) 26	%	Credits of 85		Scaled Regents Score
[26		85.0	100	
	2		81.7	97	
[24	92.3	78.5	94	
	23	88.5	75.2	90	
	22	84.6	71.9	87	
Ī	2	80.8	68.7	85	
Ī	20	76.9	65.4	81	
Ī	19	73.1	62.1	78	
ſ	18	69.2	58.8	75	
Ī	1	65.4	55.6	73	
Ī	10	61.5	52.3	69	
	1:	57.7	49.0	66	
`	14		45.8	62	
Ī	1:	50.0	42.5	59	
ļ	1:	2 46.2	39.2	55	
Ī	1	1 42.3	36.0	51	
Ī	1(38.5	32.7	48	
		34.6	29.4	43	
		30.8	26.2	39	
Ī		7 26.9	22.9	35	
	(3 23.1	19.6	31	
		19.2	16.3	25	
	-	1 15.4	13.1	21	
		3 11.5		16	
		2 7.7	6.5	12	


Answer Sheet Waves, Light, Modern Review January 2008

Base your answers to questions 69 and 70 on the information and diagram below.

A 1.50×10^{-6} -meter-long segment of an electromagnetic wave having a frequency of 6.00×10^{14} hertz is represented below.

(U.	16)	1	Credits) of 85	(Scaled Regents Score
(of	16	%	01 03	K	Regenis)
	26	100.0	85.0	100	
	25	96.2	81.7	97	
	24	92.3	78.5	94	
	23	- 88.5	75.2	90	
	22	84.6	71.9	87	
	21	80.8	68.7	85	
	20	76.9	65.4	81	
	19	73.1	62.1	78	
	18	69.2	58.8	75	
	17	65.4	55.6	73	
	16	61.5	52.3	69	
	15	57.7	49.0	66	
`	14	53.8	45.8	62	
	13		42.5	59	
	12	46.2	39.2	5 <i>5</i>	
	11	42.3	36.0	51	
	10	38.5	32.7	48	
	9	34.6	29.4	43	
	8	30.8	26.2	39	
	7	26.9	22.9	35	
	6		19.6	31	
	5		16.3	25	
	4	15.4	13.1	21	
	3		9.8	16	
	2	7.7	6.5	12	