| "Cir | ruits Part h                                                                                                                                                                         | Name             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Pow  | icr, Energy, Series, Parallel                                                                                                                                                        |                  |
|      | If the potential drop across an operating<br>300watt floodlight is 120 volts, what is the cur-<br>rent through the floodlight?<br>(1) 0.40 A (3) 7.5 A<br>(2) 2.5 A (4) 4.8 A        |                  |
| 3)   | The heating element on an electric stove dissipates $4.0 \times 10^2$ watts of power when connected to a 120-volt source. What is the electrical resistance of this heating element? | 21               |
|      | (1) $0.028 \Omega$ (3) $3.3 \Omega$<br>(2) $0.60 \Omega$ (4) $36 \Omega$                                                                                                             |                  |
|      |                                                                                                                                                                                      |                  |
| 3    | The diagram below represents an electric cir-<br>cuit.                                                                                                                               |                  |
|      |                                                                                                                                                                                      |                  |
|      | Power Supply                                                                                                                                                                         |                  |
|      | The total amount of energy delivered to the resistor in 10. seconds is                                                                                                               |                  |
| 8.   | (1) 3.2 J (3) 20. J<br>(2) 5.0 J (4) 320 J                                                                                                                                           |                  |
| Ð    | An immersion heater has a resistance of 5.0 oh<br>while drawing a current of 3.0 amperes. H<br>much electrical energy is delivered to the hea<br>during 200. seconds of operation?   | ums<br>ow<br>ter |
|      | (1) $3.0 \times 10^{3}$ J<br>(2) $6.0 \times 10^{3}$ J<br>(4) $1.5 \times 10^{4}$ J                                                                                                  |                  |

True or False, High resistance circuits use up more power than low Resistance circuits when plugged into the same battery

3

The diagram below shows a circuit with three resistors.



(1)<sup>1</sup>20 V (2) 70 V

What is the current in the circuit represented in the diagram below?



The diagram represents a circuit with two resistors in series. If the total resistance of  $R_1$  and  $R_2$  is 24 ohms, the resistance of  $R_2$  is (1) 1.0 ohm (2) 0.50 ohm (3) 100 ohms

(4) 4.0 ohms



16 In the diagram below of a parallel circuit, ammeter A measures the current supplied by the 120-volt source.



(13)

(16)

Is this circuit series or parallel ?

(14) The current flowing in the 20 ohm resistor is -

1) 2 Amps 2) 4 Amps 3) 6 Amps 4) 12 Amps

(3) The potential difference across the 60 ohm resistor is -

1)20V 2)40V 3)60V 4)120V

The current measured by ammeter A is

i) ZAnps 2) 4Amps

3) 6 Anps

4) 12 Amps.

In the circuit diagram below, ammeter A measures the current supplied by the 10.-volt battery.

The current measured by ammeter A is 1) 0.13 A 1) 2.0 A 3). 0.50 A 4.0 A 4

Base your answers to questions 96 through 100 on the diagram below which represents an electrical circuit.



| (1) 9 | 6 The equivalent | resistance of the circuit is |
|-------|------------------|------------------------------|
| 0     | (1) 25 Ω         | (3) 5.0 Ω                    |
|       | (2) 6.0 Ω        | (4) 0.17 Ω                   |

97 The potential difference across R2 is (3) 10. V (1) 1.0 V (2) 2.0 V (4) 12 V

98 The magnitude of the current in ammeter A1 is (3) 1.2 A (1) 120 A (2) 2.0 A (4) 0.83 A

99 Compared to the current in  $A_1$ , the current in  $A_2$  is

1 less

21

2 greater

3 the same

100 If another resistance were added to the circuit in parallel, the equivalent resistance of the circuit would 1 decrease Zincreyse 3 Stay Sanc

In which pair of circuits shown below could the readings of voltmeters  $V_1$  and  $V_2$  and ammeter A be correct?



(1) A and B
 (2) B and C

(3) C and D(4) A and D

: :

.

An electric circuit contains a source of potential difference and 5-ohm resistors that combine to give the circuit an equivalent resistance of 15 ohms. In the space *in your answer booklet*, draw a diagram of this circuit using circuit symbols given in the *Reference Tables for Physical Setting/Physics*. [Assume the availability of any number of 5-ohm resistors and wires of negligible resistance.] [2]

Long Problems

# 2) A 12 volt battery is hooked in Series to 4 202, 602, + 802 resistor a) Draw the circuit (1) b) Redrow the circuit with an ammeter in to measure total current, & a voltmeter to measure voltage drap across the GOR resistor (1) d) calculate the voltage drop total () Calculate the · across the 60sh resistor resistance of the circuit (Show equ., sub. & units) (2) (1)R=  $\Omega$ 

122 Base your answers to parts a through d on the diagram below which represents a circuit containing a 120-volt power supply with switches  $S_1$  and  $S_2$  and two 60.-ohm resistors.



- a If switch S<sub>1</sub> is kept open and switch S<sub>2</sub> is closed, what is the circuit resistance? [1]
  b If switch S<sub>2</sub> is kept open and switch S<sub>1</sub> is closed, how much current will flow through the circuit? [Show all calculations, including equations and substitutions with units.] [2]
- c When both switches are closed, what is the current in the ammeter? [1]
- d When both switches are closed, what is the reading of the voltmeter? [1]

F 3

Base your answers to questions 58 through 60 on the information and diagram below.

A 3.0-ohm resistor, an unknown resistor, R, and two ammeters,  $A_1$  and  $A_2$ , are connected as shown with a 12-volt source. Ammeter  $A_2$  reads a current of 5.0 amperes.



58 Determine the equivalent resistance of the circuit. [1]

- 59 Calculate the current measured by ammeter  $A_1$ . [Show all work, including the equation and substitution with units.] [2]
- 60 Calculate the resistance of the unknown resistor, R. [Show all work, including the equation and substitution with units.] [2]