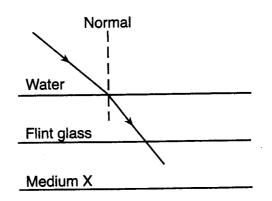

Review Test - Waves Light and Modern June 2010


This test had 24 credits of 85 for this section of the course (about 28 %). Answer all guestions and grade yourself on last page.

Base your answers to questions 24 through 26 on the information and diagram below.

A longitudinal wave moves to the right through a uniform medium, as shown below. Points A, B, C, D, and E represent the positions of particles of the medium.

27 A ray of monochromatic yellow light ($f = 5.09 \times 10^{14}$ Hz) passes from water through flint glass and into medium X, as shown below.

The absolute index of refraction of medium X is

(I) less than 1.33

2 greater than 1.33 and less than 1.52

(1) greater than 1.52 and less than 1.66 (2) equal to 1.66 28 A light ray traveling in air enters a second medium and its speed slows to 1.71×10^8 meters per second. What is the absolute index of refraction of the second medium?

Ø	$\begin{array}{c} 1.00\\ 0.570 \end{array}$	(J	1.75
(2)	0.570	Ð	1.94

- 29 Playing a certain musical note on a trumpet causes the spring on the bottom of a nearby snare drum to vibrate. This phenomenon is an example of
 - (i) resonance refraction

i) reflectioni) diffraction

- 30 In a vacuum, all electromagnetic waves have the same
 - (1) speed (1) phase

(i) frequency (iii) wavelength

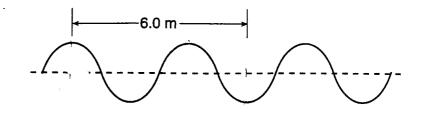
31 A particle that is composed of two up quarks and one down quark is a

() meson (2) neutron

- 32 A helium atom consists of two protons, two electrons, and two neutrons. In the helium atom, the strong force is a fundamental interaction between the
 - () electrons, only
 - electrons and protons
 - 2 neutrons and electrons
 - neutrons and protons

- 33 What total mass must be converted into energy to produce a gamma photon with an energy of 1.03×10^{-13} joule?
 - $\begin{array}{c} \textcircled{1} & 1.14 \times 10^{-30} \\ \textcircled{3} & 3.43 \times 10^{-22} \end{array} \qquad \begin{array}{c} \textcircled{3} & 3.09 \times 10^{-5} \\ \textcircled{3} & 8.75 \times 10^{29} \end{array}$
- 34 Compared to the mass and charge of a proton, an antiproton has
 - $\langle l \rangle$ the same mass and the same charge
 - (2) greater mass and the same charge
 - \mathfrak{G} , the same mass and the opposite charge
 - (\overline{q}) greater mass and the opposite charge

Note that question 35 has only three choices.

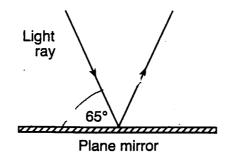

35 As viewed from Earth, the light from a star has lower frequencies than the light emitted by the star because the star is

 $\cancel{0}$ moving toward Earth

G moving away from Earth

🕥 stationary

48 The diagram below represents a periodic wave traveling through a uniform medium.

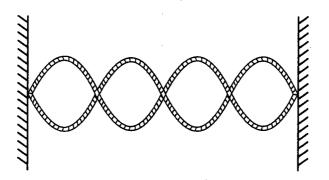


8.0 m/s 4.0 m/s

If the frequency of the wave is 2.0 hertz, the speed of the wave is In

	6.0	m/s
(E)	2.0	m/s

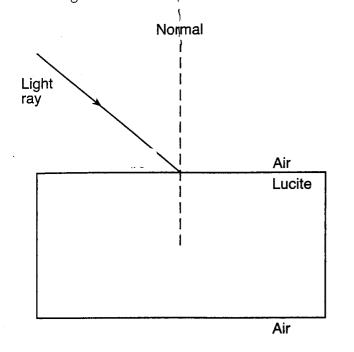
49 The diagram below represents a light ray reflecting from a plane mirror.


50.°

65°

The angle of reflection for the light ray is

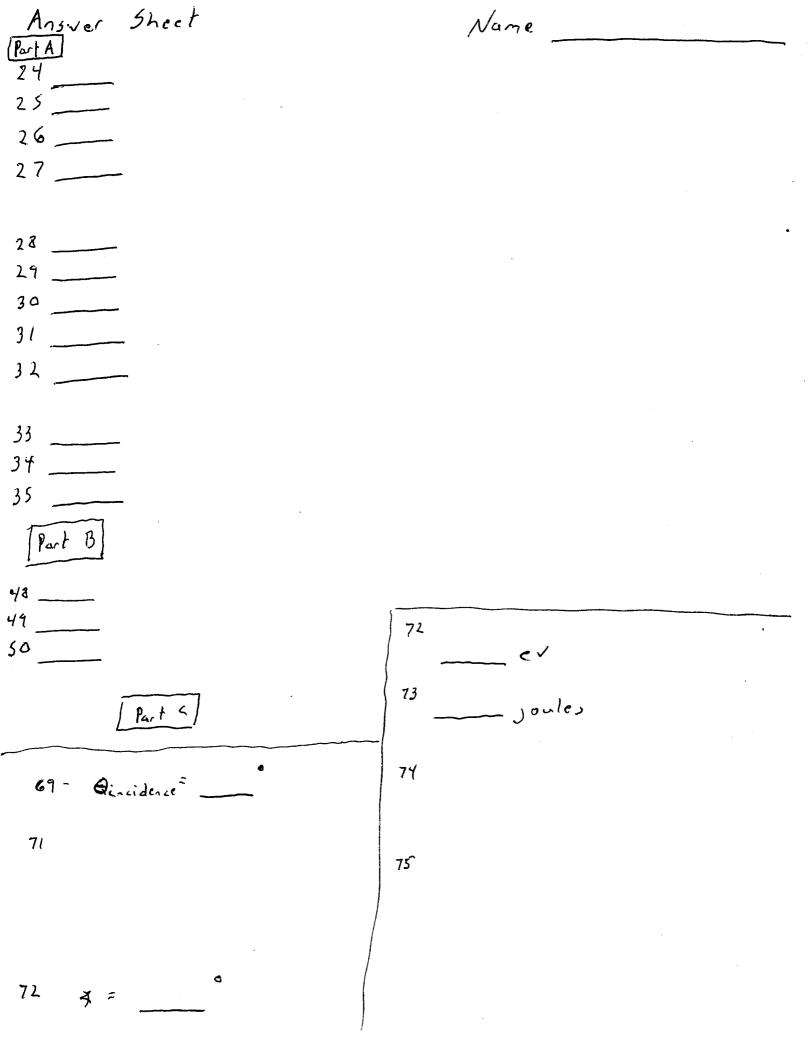
25° ۵ 35°


50 The diagram below shows a standing wave in a string clamped at each end.

What is the total number of nodes and antinodes in the standing wave? 3 nodes and 2 antinodes 5 nodes and 4 antinodes (2) 2 nodes and 3 antinodes

(4) 4 nodes and 5 antinodes Base your answers to questions 69 through 71 on the information and diagram below.

A monochromatic light ray $(f = 5.09 \times 10^{14} \text{ Hz})$ traveling in air is incident on the surface of a rectangular block of Lucite.



- 69 Measure the angle of incidence for the light ray to the *nearest degree*. [1]
- 70 Calculate the angle of refraction of the light ray when it enters the Lucite block. [Show all work, including the equation and substitution with units.] [2]
- 71 What is the angle of refraction of the light ray as it emerges from the Lucite block back into air? [1]

Base your answers to questions 72 through 75 on the information below.

As a mercury atom absorbs a photon of energy, an electron in the atom changes from energy level d to energy level e.

- 72 Determine the energy of the absorbed photon in electronvolts. [1]
- 73 Express the energy of the absorbed photon in joules. [1]
- 74 Calculate the frequency of the absorbed photon. [Show all work, including the equation and substitution with units.] [2]
- 75 Based on your calculated value of the frequency of the absorbed photon, determine its classification in the electromagnetic spectrum. [1]

/

Gredits of 24		Credit of 85	Regents Score
E 24	% <u></u>	° [†] 85	Score
24	100.0	85.0	100
23	95.8	81.5	96
22	91.7	77.9	93
21	87.5	74.4	90
20	83.3	70.8	87
19	79.2	67.3	83
18	75.0	63.8	81
17	70.8	60.2	77
16	66.7	56.7	81 77 74 71
15	62.5	53.1	71
14	58.3	49.6	68
13	54.2	46.0	64
12	50.0	42.5	61
11	45.8	39.0	57
10	41.7	35.4	52
9	37.5	31.9	52 49
8	33.3	28.3	44
7	29.2	24.8	40
6	25.0	21.3	35
5	20.8	17.7	31
4	16.7	14.2	25
3	12.5		31 25 20

 $\frac{44}{50} \frac{1}{3}$ $\boxed{Part <}$ $\boxed{Part <}$ 69 - Qincidence = 50 $71 \quad n_1 \sin \Theta_1 = n_2 \sin \Theta_2$ $I \sin 50^{\circ} = 1.5 \sin \Theta_2$ $\qquad \Theta_2 = 31^{\circ}$ $72 \quad \chi = 50^{\circ}$

72 -
$$1.24ev$$

73 1.98×10^{-19}
74 - $E = hF$
 1.98×10^{-19}
 $5 = 6.63$

1.98×10⁻¹⁹ = 6.63×10⁻³¹ F= 2.99×10¹⁴ Hz 75 -

Name Score Key